Principles for Value-Sensitive Agent-Oriented
Software Engineering

Christian Detweiler, Koen Hindriks, and Catholijn Jonker

Man-Machine Interaction Group, Delft University of Technology
{c.a.detweiler,k.v.hindriks, c.m. jonker}@tudelft.nl
http://mmi.tudelft.nl

Abstract. As software plays an increasingly important role in people’s
lives, the impact it has on their values frequently becomes apparent.
Many software design methods address “soft issues”, but very few ad-
dress values explicitly. We present six principles that design methods
should meet in order to properly deal with values. One area in which
adherence to stakeholder values is important, is Agent-Oriented Soft-
ware Engineering (AOSE). The Tropos AOSE method, with its concept
of soft-goal, comes close to meeting our principles, but does not address
values explicitly. Value-Sensitive Design is a methodology that does ex-
plicitly address value issues, but it offers little guidance in operationaliz-
ing them. We discuss a case study in which we attempt to capture values
in Tropos’ soft-goals after eliciting them using Value-Sensitive Design.
Subsequently, we discuss to what extent Tropos adheres to our princi-
ples. Finally, we propose the introduction of values as a first-class entity
in Tropos in order to meet our aims of dealing with values.

Keywords: Values, Value-Sensitive Design, Requirements Engineering,
Non-Functional Requirements, Tropos.

1 Introduction

In 2009, the designers of the social networking website Facebook introduced a
number of changes to the website. Due to these changes, users were no longer
able to choose with whom they shared the list of people (their “friends”) they
were connected to on the website. Anyone logged in to Facebook could now see
to whom any member of the website was connected. Further, Facebook decided
users’ profile pictures and the pages they “ike'[] were now publicly accessible
information. That is, information users shared on the website regarding their
interests would now be available to the Internet at large.

Facebook (partially) violated two values by introducing these changes. The
changes violated users’ value of autonomy by giving them diminished control
over how their information is shared. Furthermore, the fact that certain personal
information was now public impacted users’ privacy. The violation of these values

! Web pages on Facebook about topics, people, places, books, etc. that people
can “like”.

D. Weyns and M.-P. Gleizes (Eds.): AOSE 2010, LNCS 6788, pp. 1 2011.
© Springer-Verlag Berlin Heidelberg 2011


http://mmi.tudelft.nl

2 C. Detweiler, K. Hindriks, and C. Jonker

led to user outrage and criticism by organizations such as Electronic Frontier
Foundation [I]. Facebook responded that it tried to uphold the value of openness
shared by their target audience [2].

This conflict of values and the way it became clear exemplifies the problem
we seek to address in this paper. Designers necessarily impart social and moral
values in making choices in the design of information systems [3]. That is, design-
ers’ values, such as openness, are “put into” software artifacts, albeit implicitly.
Once a system has been put into use, it affects its stakeholders by supporting
or hindering their values to various degrees. This ultimately affects the accept-
ability of information systems. Often, these values and value issues only become
explicit after the software has been put into use, at which point the damage
has been done. Therefore, we plead for dealing with values explicitly by treating
them as separate “first-class entities” throughout the design process in software
design methods.

This problem holds for software engineering in general, but is especially rel-
evant in agent-oriented software engineering (AOSE), where we design agent-
based systems. These systems are autonomous, reactive, pro-active, and have
social ability [4]. Moreover, they act on stakeholders’ behalf, so it is important
that they meet stakeholders’ requirements. Values can be considered require-
ments in that they are stakeholder needs that systems should uphold. The issue
of meeting requirements is part of one of the areas of AOSE research identified
in [5]. Weyns et al. conclude that we have to extend our research into goal-
oriented design, verification and validation in order for agent-oriented software
engineering to be adopted in industry. In particular, we should be able to provide
guarantees with respect to stakeholder requirements.

In as far as design methodologies explicitly take values into account in the
design process, it is in the form of non-functional requirements [6] or similar
constructs. However, designers run the risk of leaving the impact values have
on design implicit by representing values as non-functional requirements. Meth-
ods such as Quality Attribute Workshops and its notion of scenarios [7] and
Attribute-Driven Design [§] deal with non-functional requirements formally, and
have been applied to AOSE by Weyns [9]. However, AOSE methods typically
neglect non-functional requirements. Values should be included explicitly as en-
tities in themselves in order to be properly considered and to have an identifiable
and justifiable effect on the design.

AOSE methodologies such as Tropos do focus on stakeholders’ requirements
(in the form of goals) throughout the design process, but do not explicitly take
values into account. To address values in Tropos, they have to be represented
as (soft)goals. Many important characteristics of values are lost in representing
values as goals. Value-Sensitive Design [I0] (VSD) provides a comprehensive
framework for eliciting values, but provides little to make these values concrete.
In this paper we propose to address this issue by combining elements of VSD
with Tropos. This should form an AOSE approach that meets our aim of making
the influence of values on the design explicit during all design phases.



Principles for Value-Sensitive AOSE 3

This paper is organized as follows. In section 2 we briefly discuss the concept of
values and discuss six value-related principles design methods should adhere to.
We then discuss some common ways of dealing with such issues in requirements
engineering. Then, in section 3 we discuss a case study to discover to which extent
values can be dealt with in Tropos. In section 4, we analyze to what extent Tropos
adheres to our principles and discuss important differences between values and
the soft-goals we use to include values in Tropos, and propose introducing a
value entity in Tropos. We draw conclusions and suggest directions for future
work in section 5.

2 Values in Existing Software Engineering Methods

This section discusses to what extent values are already taken into account in
existing software engineering approaches with an emphasis on agent-oriented
software engineering methods, and in particular Tropos. Before this discussion,
we present an overview of the concept of values and discuss the role of values in
relation to the stakeholders and designers in the design of multi-agent systems.
Finally, we provide a short introduction of the Value Sensitive Design method
and discuss why VSD is not an answer in itself.

2.1 Values

The introduction describes a real world case of stakeholders’ values (i.e., privacy,
autonomy and openness) being hindered or supported by technology. Other val-
ues implicated in system design include human welfare, ownership and property,
freedom from bias, and trust [I0]. The general notions of norms and values are
known to us all; norms and values are instilled into all of us during our childhood
by our parents and social surroundings and continue to be throughout our lives.

Values are abstract (e.g., [ITJI2]), motivational constructs that apply across
contexts and time [I1]. They convey what is good (e.g., [I3/14]) and important
to us (e.g., [ITII10]). For example, privacy was something good and important for
users in the Facebook case. As a result, they were outraged when their privacy
was not respected. They would have reacted similarly if another website, person
or institution had failed to respect their privacy, as values hold across situations.
As Hodges and Baron argue, values are convictions that some things ought to
be and others not [I5]. To make the concept of a value more precise it can be
differentiated from similar concepts, such as laws, rules, goals, norms, standards,
and so on (e.g., [T2/T3ITOITAITT).

Values have a special status due to their importance to their holders (vio-
lation of values is seen as deplorable or morally wrong) and the expectations
they generate regarding the behavior of the holder and of others. Values create
preference for behavior or action that supports them, which gives them a nor-
mative character. As Miceli and Castelfranchi point out regarding the normative
character of values, “if something is good, it should be pursued” [13, p. 181]. For
example, “honesty” is a value which gives rise to a norm “be honest”. Moreover,



4 C. Detweiler, K. Hindriks, and C. Jonker

if something is good, it should not only be pursued by the holder of the value;
it should be pursued by others as well. However, others do not always hold the
same values. This normative character of values is a ground for conflicts when
people hold different values or different priorities among their values.

Our work is concerned with the design of multi-agent systems and systems
that are expected to have a social impact. Considering that the systems we build
can conflict with the values and norms of the stakeholders of these systems, it is
especially important to explicitly recognize the role values play in design.

Returning to the Facebook example, we can say that the value openness of
Facebook gave rise to a norm of the Facebook team, i.e., “everybody should share
personal information”, which conflicts with the value of privacy of the users. In
retrospect, could we not say that the way out of this conflict lies in considering
the shared value of autonomy, with an associated norm that everybody should
be able to decide for herself? Based on this shared norm we can derive the
more specific norm that everybody has to decide for herself whether to share
information or not. It is a compromise between openness and privacy that is
acceptable to both developers and users of Facebook.

This example illustrates the abstract and normative nature of values. Values
can be instantiated according to the situation at hand. For example, the value
of autonomy is instantiated to insisting on control over how to share personal
information on Facebook. The dormant problem of two conflicting abstract val-
ues (openness and privacy) became acute at the instantiated level. This leveled
approach, working with instantiations, can also be found in the work of Maio
[12]. To discover possible conflicts at an early stage of system development, we
advocate value elicitation at the start of the project to make people consciously
aware of their values; this will reduce costs, effort, and frustration. Proynova et
al. make a similar plea [18], focusing mainly on elicitation.

We recognize that, though conflicts between moral values are not dealt with
as such in the approaches described here, many mainstream software engineer-
ing methods do deal with conflicts of a similar form. Certain design decisions
may hinder one value while achieving another. Conflicts with this structure are
dealt with in mainstream software engineering methods in the form of tradeoffs
between quality requirements (see, for example, [9]).

In our opinion the process of value elicitation at the start of a design process
should answer the following questions. Which people’s values can be impacted
by the system under design and which people’s values can impact the design
of the system? In our view, this question is essential for the design of system
and its answer is both obvious as well as treacherous by its obviousness. The
answer to the first part of the question is the stakeholders, and the answer to the
second part is the stakeholders and the designers/developers. The last addition,
that of the designers, is easy to overlook, as the designers might unconsciously
assume that their values are shared by the stakeholders. The Facebook example
is illustrative of this point. We conclude that to avoid the negative consequences
of violating values and to promote the support of values as much as possible,
the following principles should be satisfied by design methods.



Principles for Value-Sensitive AOSE 5

1. The values of all stakeholders including designers/developers should be
elicited in as far as relevant for the system under design.

2. Stakeholder values should be addressed during all phases of the design pro-
cess.

3. Conflicts between values of the designers and those of the stakeholders need
to be discussed with those who issued the order for the system.

4. To account for the relevant values, to the relevant values need to be instan-
tiated explicitly throughout the design process.

5. Design decisions can and need to be justified and evaluated in terms of
explicit (instantiations of) stakeholders’ values.

6. Conflicts between values need to be made clear and addressed in cooperation
with the stakeholders.

These principles are used in the next section to discuss how existing requirement
engineering methods as part of design methods deal with values.

2.2 Requirements and Values

Requirements engineering is one of the first steps in the larger process of software
development. It is the process of identifying stakeholders and their needs, and
documenting these in a form that can be analyzed, communicated, and subse-
quently implemented [19]. Broadly speaking, there are two types of requirements:
functional requirements and non-functional requirements [6]. The former are re-
quirements that define a function of the system, or something that a system will
do. The latter define not what a system will do, but how it will do it. Require-
ments engineering has attention for “soft issues” such as politics and people’s
values, although dealing with soft issues is problematic as there is little guidance
on how to do so [20]. Concepts used to specify soft issues include non-functional
requirements, quality attributes, soft constraints, and soft-goals.

Though there is no consensus in the requirements engineering community as
to exactly what non-functional requirements are [21], broadly speaking a non-
functional requirement is “a software requirement that describes not what the
software will do, but how the software will do it” [6] p. 6]. Non-functional require-
ments are often refered to as “-ities” or “-ilities” [22]. Examples of non-functional
requirements include usability, maintainability, adaptability, efficiency, and flex-
ibility.

The concept of non-functional requirement appears to be broad enough to
cover values. In fact, some values, namely security and privacy (as a feature
of security), have been dealt with in an extension of the Tropos method [23].
However, not all non-functional requirements are values. Non-functional require-
ments such as maintainability or portability, while important, are conceptually
far removed from the moral good worth pursuing that values such as autonomy,
trust, and justice point to. The examples of non-functional requirements given
here are closely related to the envisioned system, whereas the examples of val-
ues are more closely related to humans, culture, or society. Furthermore, as far
as we know, no specific guidelines exist for dealing with moral values in design
methods that use the concept of non-functional requirements.



6 C. Detweiler, K. Hindriks, and C. Jonker

The related concept of quality attribute can be defined as “[a] feature or char-
acteristic that affects an item’s quality” where quality is understood as “[t]he
degree to which a system, component, or process meets specified requirements”
or “[t/he degree to which a system, component, or process meets customer or
user needs or expectations” [24, p. 60]. As with non-functional requirements,
this term is so general that it provides no guidelines for dealing with values
specifically.

Soft constraints are requirements for dealing with over-constrained problems,
as well as for dealing with uncertainty, vagueness or imprecision [25]. As stated
in [25]: “They can be seen as a preferential constraint whose satisfaction is
not required, but preferred.” Treating soft constraints as “preferred but not
required” disqualifies soft constraints as the way to model values as the moral
wrongness of violating a value is lost. Nonetheless, we can try dealing with values
as soft constraints. Soft constraints are to be elicited during the requirements
engineering process, however, if values are not specifically addressed chances are
that no values will be made explicit (principle 1). Soft constraints of stakeholders
are typically taken into account, and that way principle 2 can be said to hold in
as far as principle 1 is upheld. Principle 3 is not treated using values. Principles
4, and 5 are treated accepting that values are part of the whole set of soft
constraints. Principle 6 is not dealt with as such.

Soft-goals, as used in e.g., Tropos [20], are requirements that are not clearly
defined and do not have clear criteria for satisfaction, drawing on the notion
of satisficing instead [27]. They are a form of non-functional requirements that
refer explicitly to goals, an important concept in agent technology.

As we are particularly interested in agent-oriented software engineering [28§]
we focus on Tropos and its soft-goals. Treating values as soft-goals, we can
summarize that principles 1, 2, 4, and 5 are treated to some extent in Tropos,
but principles 3 and 6 are in no way part of the Tropos method. With respect
to principle 1, indirect stakeholders are not taken into account, although the
method could be easily adapted to cover this. Principle 2 is covered in the sense
that soft-goals can play a role during all phases of the design. Principle 5 is
covered in the sense that decisions are related to soft-goals, but not in as far as
one soft-goal is weighed more heavily than another to make a choice.

Section 3 describes our effort to see how far we can get with modeling values
as soft-goals in Tropos and will explain our conclusions regarding the principles.

Before focusing on Tropos and the possibilities soft-goals offer to include values
in the design, we would like to mention one more approach that might be useful
with respect to values.

2.3 Value-Sensitive Design

VSD “is a theoretically grounded approach to the design of technology that
account for human values in a principled and comprehensive manner throughout
the design process” [29]. In VSD, emphasis is given to supporting moral values
or values with ethical import, such as human welfare, ownership of property,
privacy, and freedom from bias [10].



Principles for Value-Sensitive AOSE 7

VSD provides an iterative and integrative three-part methodology consisting
of conceptual, empirical, and technical investigations. Conceptual investigations
focus on discovering affected stakeholders, their values, and analyzing these val-
ues and tensions between them [30]. The first step is to perform a stakeholder
analysis to identify direct and indirect stakeholders, which are the people who
interact directly with the technology, and those who are impacted by the tech-
nology without interacting with it, respectively.

For each group of stakeholders, potential harms and benefits are identified.
The list of harms and benefits can be used to map harms and benefits onto
associated values, especially human values with ethical import.

Once these key values have been identified, a conceptual investigation
of the values is conducted supported by (philosophical) literature, resulting
in clear definitions of those values. Potential value conflicts, which can con-
strain the design space, are examined. Stakeholders are involved if conflict-
ing values hinder one another in the design, such as accountability versus
privacy.

Conceptual investigations need to be informed by empirical investigations of
the technology’s context. VSD does not prescribe a specific method for this stage,
stating that ”the entire range of quantitative and qualitative methods used in
social science research is potentially applicable” [10]. Friedman and colleagues do
suggest that semi-structured interviews of stakeholders can be a useful method
to understand stakeholders’ judgments about a context of use, an existing tech-
nology, or a proposed design.

Technical investigations focus on the properties and mechanisms of existing
technologies that support or hinder human values. Alternatively, technical inves-
tigation can consist of designing a system to support identified human values.
Though technical investigations of the first form and empirical investigations
seem similar, technical investigations focus on the technology itself, and not on
the individuals affected by it, as empirical investigation does. During this stage,
it can be helpful to make explicit how design trade-offs map onto value conflicts
and affect different groups of stakeholders.

It could be argued that, individually, the steps taken in VSD are common
sense. Common sense as they may be, these steps are rarely taken together in
a structured manner. As a result values are often neglected in design and ad-
dressed after the fact, as cases of privacy issues with social networking websites,
bias in search engines, and intellectual property issues with file-sharing software
illustrate. VSD offers a structured approach to addressing values.

The strengths of VSD lie in its focus on direct and indirect stakeholders, how
they are or will be affected by the technology, and what values are implicated.
The focus on a broad range of stakeholders, along with the identification of
potential value conflicts and the aim to deal with values throughout design,
suggest that VSD adheres to our six principles. However, VSD would benefit
from means to not just elicit values, but actually incorporate them in design
and eventually implement them.



8 C. Detweiler, K. Hindriks, and C. Jonker

3 Case Study: Values in Tropos

To discover to which extent values can be dealt with in Tropos in adherence
to the six principles of Section 2.1 we performed a case study. The chosen case
study is that of designing a conference management system with an emphasis
on the values involved. We picked this case study as it was used in [2§] to
illustrate the use of three agent-oriented software engineering methods, including
Tropos, and was based on an earlier case study presented in [31]. Furthermore,
conference management systems are at the core of the peer-reviewing established
by researchers to protect the quality of research. The decisions made during
peer-reviewing have a high impact on researchers. Therefore, the design of such a
system must be done in such a way that the norms and values of the stakeholders
are respected as much as possibleE

The rest of this section is organized as follows. We first identify Tropos, we
then describe the general purpose of conference management systems and iden-
tify the stakeholders, after which we inject the process of value elicitation for use
later on. We then proceed with the remaining value-related steps in the Tropos
method with an emphasis on how values are addressed in these steps.

The Tropos software development methodology supports the agent-
oriented paradigm and the associated concepts of actors, plans and goals through-
out the software development process [20], [28], [32]. Its main value-related steps
are stakeholder identification, goal identification, and goal decomposition.

The general purpose of a conference management system depends
on the stakeholders involved and vice versa. Tropos identifies stakeholders early
in the design process, in the Early Requirements phase. The main stakeholders
involved are a paper authors, paper reviewers, program chairs, and publisher of
the proceedings [31]. To this we add the general public / government and the
researcher as indirect stakeholders. We assume that the fundamental choice for
blind peer reviewing has already been made in the organization of the confer-
ence. The general purpose is to support paper submission, bidding for papers for
review, distribution of papers to reviewers, collection of reports, supporting pro-
gram committee meetings, communication of results, and submission of camera
ready versions of papers. All these aspects are subservient to the underlying con-
cern of publishing high quality research only and blocking substandard research
reports. The general purpose and the underlying concern already implicitly refer
to a number of values.

Value elicitation was performed with each stakeholder group and ourselves
as system designers. We used semi-structured interviews as suggested in the

2 Note that the design of a conference management system in terms of the roles in-
volved is primarily determined by the organization structure of the conference. In
this case we chose for a conference management system that adheres to that of
smaller conferences or workshops and ignored the more recent use of a Senior Pro-
gramme Committee as is used in the AAMAS conference. It would be good practice
to design the organization structure of the conference before designing the conference
management system. However, for our purpose of showing how to deal with values,
it is enough to start with some conference organization structure.



Principles for Value-Sensitive AOSE 9

VSD method of [10]. In the interviews we explained the intention of designing
a conference management system and described the basic activities it would
support. We asked stakeholders to identify potential harms and benefits of such
a system, and together with them identified the values underlying these harms
and benefits. It is important to note that most interviewees had experience with
existing systems and due to that it is likely they were reflecting on the systems
they were familiar with. Also, most interviewees had experience with multiple
stakeholder roles, making it difficult to rule out that they projected values they
hold in one role to another role.

The authors mention anonymity of reviewers and conflicts of interests as po-
tential harms and anonymity of authors as a benefit. They stated that anonymity
removes context, which makes it difficult to assess reviewers’ expertise and dam-
ages the quality of the discussion. Also, it allows reviewers to “ride their hobby
horse”, posing a threat to their objectivity. On the other hand anonymity of au-
thors removes hierarchical considerations, leading to judgments based on quality
and not on academic position. This is a potential benefit. The authors warned for
conflict of interests arising from users occupying multiple roles within the same
system. This could lead to reviewers who are also authors seeing the ranking of
their own paper or reviewers reviewing papers of friends. The authors concluded
that the harms are based on their values of transparency, fairness, and account-
ability, while the benefits are based on their values of fairness and privacy and
would improve the quality of publications.

Reviewers mentioned anonymity of reviewers as a benefit. It also allows re-
viewers to be as critical as (they feel) they need to be. Together, we concluded
that the underlying values are privacy and quality of publications. PC chairs con-
sidered reuse of the system across conferences to be a potential benefit, which
contributes to the trustworthiness of the system. Trust is the underlying value
here. A potential harm that one PC Chair identified was the potential for bias
in seeing authors’ names. This could lead to bias based on gender and ethnicity.

Publishers benefit from the peer review process the system supports. By pub-
lishing high-quality research and barring substandard research, the reputation of
the publication and that of the publisher potentially increase, as do sales. This
supports publishers’ values of quality, profit and trust.

Researchers in general consider it a potential harm that poor quality research
is disseminated. Poor quality research is damaging to the reputation of the re-
search community with the general public and with government. Also, if re-
searchers’ own work is disseminated and of poor quality, it is damaging to their
reputation with peers. Both senses of reputation, and the related value of scien-
tific integrity, are values held by researchers.

The general public and government see the publication of high quality research
and the barring of sub-standard level publications as potential benefits. These
ultimately support the value of knowledge.

As system designers in this case, we discovered that we were influenced by
our identification with the roles of author, reviewer, and PC chair, and as such
shared many of the values of those stakeholders groups.



10 C. Detweiler, K. Hindriks, and C. Jonker

All stakeholders identified use of the conference management system for mul-
tiple conferences as a benefit. Reuse enhances the trustworthiness of the system
and the process it supports. Also, the record of interactions with the system
supports transparency and accountability.

In summary, we can see a range of values at stake here, among which poten-
tial or real conflicts exist, for example between transparency and privacy. This
example conflict leads to opposing views on whether the system should provide
anonymity. A compromise between such values must be found, that is, a feature
that supports both or at least hinders neither.

Stakeholders’ goals are identified next, and for every goal the developer
decides whether the actor itself can achieve it or whether it needs to be delegated
to another actor. Goals represent strategic interests of actors. A distinction can
be made between (hard) goals and soft-goals. Hard goals have clear criteria for
satisfaction. Soft-goals do not have clear criteria for satisfaction, drawing on the
notion of satisficing instead [27].

The only option that Tropos has for representing the values identified in the
previous stage are soft-goals. Due to space limitations, we will only discuss how
the potential harm/benefit of anonymity, the potential harm of conflicts of in-
terest and the underlying values at stake could be addressed in Tropos. Tropos
actors are written in italicized bold. Goals and soft-goals are written in bold.

Authors saw the anonymity of reviewers as a potential harm as it prevents
them from assessing the expertise of the reviewer. So, we could say the Author
has a goal, know reviewer identity, which contributes positively to the val-
ues of transparency and accountability. The know author identity goal is
why-linked to a goal dependency between the Author and the PC Chair, dis-
close reviewer identity. We will discuss how this conflicts with Reviewers’
goals shortly.

Authors saw their own anonymity as a potential benefit. So, we introduce
the goal anonymity from reviewers. This goal contributes positively to the
Awuthor’s values of privacy and fairness, which we represent as soft-goals. The
goal is why-linked to the goal dependency protect author anonymity between
the Author and the PC Chair.

Authors also saw conflicts of interest as a potential harm. So, the Author
actor depends on the PC Chair to avoid conflicts of interest. This goal
contributes positively to the value of fairness, represented as a soft-goal. How-
ever, since avoid conflicts of interest is a goal dependency and hence becomes
the PC Chair’s goal, the only option we have to link it to the Author’s value
of fairness in Tropos is the why-link.

Reviewers saw anonymity as a potential benefit. Therefore, we say that the
Reviewer actor has a goal dependency, protect reviewer anonymity, on
the PC Chair actor. This contributes positively to the Reviewer’s values of
scientific integrity and privacy, represented as soft-goals. Since the protect
reviewer anonymity is a goal dependency, the only option we have to indicate
the link between it and the values it contributes to is the why-link. However, the
why-link is also a type of dependency, and only one link can be constructed for a



Principles for Value-Sensitive AOSE 11

Fig. 1. Early requirements model of conference management system in Tropos with
values as represented as softgoals

dependency. So, we have to define an intermediate goal, reviewer anonymity,
which contributes positively to scientific integrity and privacy and is why-
linked to protect reviewer anonymity.

Reviewers’ goal protect reviewer anonymity obviously conflicts with au-
thors’ goal to know reviewer identity. Reviewers’ value of privacy conflicts
with authors’ value of transparency here.

We attempted to model values in Tropos as soft-goals in order to meet the
aims expressed in our six principles. However, there are a number of issues with
this that we will discuss in the next section.

4 Discussion

4.1 Six Principles

We will now discuss the results of the case study described in section 3 in light
of the six principles described in section 2.

The first principle states that the values of all stakeholders and designers or
developers should be elicited as far as relevant to the system under design. While
stakeholders are considered in Tropos, the group of stakeholders considered is
limited to actors that will eventually use the system in some way. Indirect stake-
holders, such as the general public in the case study above, are not considered,
though they may be affected by the (output of the) system. Also, designers and
developers are not considered in Tropos.

The second principle states that stakeholder values should be addressed
throughout the design process. As the case study demonstrates, if we represent



12 C. Detweiler, K. Hindriks, and C. Jonker

values as soft-goals in Tropos, then they can be said to be addressed throughout
the design process. However, as we discuss below, values are not (soft) goals.

The third principle states that conflicts between the values of the designers and
those of the stakeholders need to be discussed with those who issued the order
for the system. Since Tropos does not consider the designers as such, conflicts
between their values and those of the stakeholders do not become apparent.

The fourth principle states that values have to be instantiated explicitly
throughout the design process. If we represent values as soft-goals, we can say
that values are instantiated throughout the design process through the process of
goal decomposition. However, there are problems with treating values as goals,
which we discuss below.

The fifth principle is that design decisions need to be justified and evaluated
in terms of explicit instantiations of stakeholders’ values. We can say that goals
and decompositions of goals into lower-level goals are design decisions. By draw-
ing contribution links between these goals and soft-goals representing values, we
can in a sense evaluate and justify these design decisions by seeing which design
option (alternative subgoal) contributes best to the soft-goal (value) in question.
It should be noted that the extent to which contribution can be expressed is lim-
ited. The metrics + and ++ indicate partial and sufficient positive contribution,
respectively, and the metrics — and —— indicate partial and sufficient negative
contribution, respectively [26].

The sixth principle states that conflicts between values need to be made clear
and addressed in cooperation with the stakeholders. In Tropos, the only links
between (soft) goals are varieties of decomposition links, namely AND or OR
decompositions, means-end links, or contribution links. Also, only one link can
exist between these (soft) goals. That is, we cannot have a goal 1 contribute to
a goal 2, and have that goal 2 contribute to goal 1. Therefore, we cannot express
conflict between (equally abstract) values as such, for example openness and
privacy. We could define a higher level soft-goal (value) and say that one lower-
level soft-goal contributes positively to it, while another contributes negatively.
These soft-goals would then be in conflict, in terms of how they contribute to
the higher-level soft-goal, but this is not an option for intrinsic values (or ends)
in conflict.

In summary, we can say that the first, fifth and sixth are satisfied to some
extent; the second and fourth are satisfied if we consider values to be goals; the
third cannot be said to be satisfied. However, this is the very reason why Tropos
does not adhere to our principles. To adhere to the principles we would have to
represent values as soft-goals, but values should not be treated as soft-goals.

4.2 Differences between Values and Goals

Values are not the same thing as goals. Miceli and Castelfranchi provide a useful
distinction between these concepts. “Values are not goals, they are assumptions
(more precisely, evaluations). A value is a judgment, though very general and
vague. It says of something that it is good or bad. A goal is a regulatory state
in someone’s mind” [13] p.179]. They illustrate a further important feature of



Principles for Value-Sensitive AOSE 13

values in discussing the difference between values and norms: “Values in fact
offer grounds for, or give rise to norms. Hence the normative’ facet of values:
If something is good, it should be pursued” [I3] p. 181]. If we represent values
as soft-goals, the evaluative aspect (“X is good”) and the normative aspect
(“X should be pursued”) are lost. Represented as a soft-goal, a value becomes
something that can be satisficed (i.e., sufficiently satisfied). Not achieving a goal
is not morally wrong as such. Violating a value is seen as morally wrong. This
distinction is important. Not taking these aspects into account could lead to
problems once the design has been implemented and put into practice, as we
saw in the example of Facebook.

4.3 Dealing with Values in Tropos

Considering the issues with representing values as soft-goals, we propose some
additions to the Tropos approach. First of all, in line with our first principle,
we propose that the notion of stakeholder in Tropos be extended beyond those
groups that delegate their goals to a system to all who will be affected by the
system (i.e., direct and indirect stakeholders) and those who shape the system.
These groups of stakeholders need to be approached as a source of requirements
(values and otherwise) early in the requirements engineering process.

Second, since values should not be represented as goals, we propose the addi-
tion of a first-class value entity to Tropos. Since values are held by stakeholders,
the value entity needs to be connected to the stakeholders that hold it. As we
discussed above, values are general and abstract evaluations. They are concep-
tions of what is good and are important to their holder. We need to be able to
indicate the goodness and importance of each value to its holder in some way,
so we can prioritize values and assess the importance of addressing each one.
Further, since what is good should be pursued, values can give rise to goals and
norms. Hence, we need to be able to represent links between values and the
norms and goals they generate. Norms should also be represented, but this is
beyond the scope of this paper. Values eventually need to be implemented in
some way. Antunes and Coelho’s Belief, Values, Goals (BVG) architecture uses
values as central motivational mechanisms in their agents’ minds [33]. We see
this as even more of a motivation to address values early on in design. Also, de-
signers could make use of such an architecture to implement the values elicited
and represented during the requirements phase.

Third, values and their instantiations can conflict. The conflict between Face-
book’s value of openness and users’ value of privacy is a case in point. We need to
be able to identify such conflicts in order to deal with them early on. To this end,
we propose the addition of a conflict relationship between entities, specifically
values, in Tropos.

Including indirect stakeholders as a source of (value) requirements, treating
values as separate entities in models, explicitly representing conflicts between
values, and dealing with values throughout design, as implementing our proposals
will allow us to do, will provide us with an approach that adheres to the six
principles described in section 2.1.



14 C. Detweiler, K. Hindriks, and C. Jonker

5 Conclusions

In summary, software impacts human values. In light of this fact and the special
status values have, we proposed six principles designers should adhere to. Some
requirements and software engineering concepts seem similar to values. However,
there are some important differences between values and these concepts. VSD is
a methodology that aims to account for (moral) values in design. VSD is a useful
methodology for eliciting and defining stakeholders’ values. However, VSD as-is
does not provide a means for implementing such values. This makes it difficult
to assess the extent to which values are incorporated in actual designs.

In our case study in we attempted to capture values in Tropos soft-goals and
showed that Tropos as-is cannot fully handle our six principles. We argued that
Tropos’ soft-goals are fundamentally different from human values as described
here. Representing values as soft-goals does not make values sufficiently explicit.

To address these problems, we propose complementing Tropos with a separate,
first-class entity to capture values. This entity will allow the designer to explicitly
represent values throughout the design process, and to make values concrete
enough to operationalize them and to expose and address conflicts between them.

Future work should address the issue of representing values. Also, future work
should deal with representing and addressing value conflicts, as these are an
important source of many of the issues with values in design. To this end, a
formal framework of values is needed. Further, the issue of dealing with different
stakeholders’ views on specific values should be addressed.

Acknowledgments. We would like to thank Danny Weyns, Marie-Pierre
Gleizes, and the participants of the AOSE 2010 workshop for the suggestions
they gave during a fruitful discussion there. Also, we would like to thank the
anonymous reviewers for their helpful comments.

References

1. Bankston, K.: Facebook’s new privacy changes: The good, the bad, and the ugly
(2009)

2. Kirkpatrick, M.: Facebook’s zuckerberg says the age of privacy is over (2010)

3. Friedman, B.: Human Values and the Design of Computer Technology. Cambridge
University Press, CSLI, New York, Stanford, CA (1997)

4. Wooldridge, M., Ciancarini, P.: Agent-oriented software engineering: the state
of the art. In: Agent Oriented Software Engineering III, pp. 55-82. Springer,
Heidelberg (2001)

5. Weyns, D., Parunak, H., Shehory, O.: The future of software engineering and multi-
agent systems. International Journal of Agent-Oriented Software Engineering 3(4)
(2009)

6. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-functional requirements in soft-
ware engineering (2000)

7. Barbacci, M., Ellison, R., Lattanze, A., Stafford, J., WeinStock, C., Wood, W.:
Quality attribute workshops (qaw) (cmu/sei-2003-tr-016). Technical report, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2003)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Principles for Value-Sensitive AOSE 15

. Wojcik, R.: Attribute-driven design (add), version 2.0 cmu/sei-2006-tr-023. Techni-

cal report, Software Engineering Institute, Carnegie-Mellon University, Pittsburgh,
PA (2006)

. Weyns, D.: Architecture-Based Design of Multi-Agent Systems. Springer, New York

(2010)

Friedman, B., Kahn, P., Borning, A.: Value sensitive design and information sys-
tems. In: Human-Computer Interaction and Management Information Systems:
Foundations, pp. 348-372. ME Sharpe, New York (2006)

Bardi, A., Schwartz, S.: Values and behavior: Strength and structure of relations.
Personality and Social Psychology Bulletin 29(10), 1207 (2003)

Maio, G.R.: Mental representations of social values. Advances in Experimental
Social Psychology 42, 1-43 (2010)

Miceli, M., Castelfranchi, C.: A cognitive approach to values. Journal for the The-
ory of Social Behaviour 19(2), 169-193 (1989)

Schroeder, M.: Value theory. In: Zalta, E.N., ed.: The Stanford Encyclopedia of
Philosophy. Fall 2008 edn. (2008)

Hodges, B.H., Baron, R.M.: Values as constraints on affordances - perceiving and
acting properly. Journal for the Theory of Social Behaviour 22(3), 263294 (1992)
Rokeach, M.: Beliefs, attitudes and values: A theory of organization and change
(1968)

Spates, J.: The sociology of values. Annual Review of Sociology 9(1), 2749 (1983)
Proynova, R., Paech, B., Wicht, A., Wetter, T.: Use of personal values in require-
ments engineering—a research preview. Requirements Engineering: Foundation for
Software Quality, 17-22 (2010)

Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap, pp. 35—46.
ACM, New York (2000)

Thew, S., Sutcliffe, A.: Investigating the role of’soft issues’ in the re process. In:
16th IEEE International Requirements Engineering, RE 2008, pp. 63-66 (2008)
Glinz, M.: On non-functional requirements. In: 15th IEEE International Conference
on Requirements Engineering, RE 2007, pp. 21-26. IEEE, Los Alamitos (2007)
Chung, L., do Prado Leite, J.: On non-functional requirements in software en-
gineering. In: Conceptual Modeling: Foundations and Applications, pp. 363-379
(2009)

Mouratidis, H., Giorgini, P.: Secure tropos: A security-oriented extension of the
tropos methodology. International Journal of Software Engineering and Knowledge
Engineering 17(2), 285-309 (2007)

Ieee standard glossary of software engineering terminology. IEEE Std 610.12-1990
(1990)

Bartak, R.: Modelling soft constraints: a survey. Neural Network World 12(5),
421-432 (2002)

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203236 (2004)

Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of the Third IEEE International Symposium on Re-
quirements Engineering, RE 1997, pp. 226-235 (1997)

DeLoach, S., Padgham, L., Perini, A., Susi, A., Thangarajah, J.: Using three aose
toolkits to develop a sample design. International Journal of Agent-Oriented Soft-
ware Engineering 3(4), 416-476 (2009)



16

29.

30.

31.

32.

33.

C. Detweiler, K. Hindriks, and C. Jonker

Friedman, B., Kahn, P., Borning, A.: Value sensitive design: Theory and methods.
University of Washington Technical Report (2002)

Miller, J., Friedman, B.; Jancke, G.: Value tensions in design: the value sensitive
design, development, and appropriation of a corporation’s groupware system, pp.
281-290. ACM, New York (2007)

Ciancarini, P., Nierstrasz, O., Tolksdorf, R.: A case study in coordination. In:
Conference Management on the Internet (1998)

Giunchiglia, F., Mylopoulos, J., Perini, A.: The tropos software development
methodology: processes, models and diagrams. LNCS, pp. 162-173 (2003)
Antunes, L., Coelho, H.: Redesigning the agents’ decision machinery. Affective
Interactions, 121-137 (2000)



	Principles for Value-Sensitive
 Agent-Oriented Software Engineering
	Introduction
	Values in Existing Software Engineering Methods
	Values
	Requirements and Values
	Value-Sensitive Design

	Case Study: Values in Tropos
	Discussion
	Six Principles
	Differences between Values and Goals
	Dealing with Values in Tropos

	Conclusions
	References




